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tures in the domain could be adopted from the outset.
Subsequent adaptation to solution features in the domainStable and spectrally accurate numerical methods are constructed

on arbitrary grids for partial differential equations. These new meth- need not rely on smooth mappings. In addition, these ‘‘ar-
ods are equivalent to conventional spectral methods but do not bitrary-grid spectral techniques’’ could be used in conjunc-
rely on specific grid distributions. Specifically, we show how to tion with multidomain ideas. We focus on formalizing these
implement Legendre Galerkin, Legendre collocation, and Laguerre

ideas within the context of spectral techniques.Galerkin methodology on arbitrary grids. Q 1996 Academic Press, Inc.

In this paper, we present some ideas for constructing
spectral methods with arbitrary grids. We demonstrate
these ideas for the case of hyperbolic equations; however,1. INTRODUCTION
these ideas can be applied to any partial differential equa-

Conventional spectral methods impose rigid require- tion. To illustrate the basic idea, consider the following
ments on the computational grids used. The grid points hyperbolic system of equations in conservation form:
are the nodes of Gauss-like quadrature formulas (Gauss,
Gauss Radau, or Gauss Lobatto (GL) formulas). These

U
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F(U)

x
, 21 # x # 1, (1)nodes are denser at the boundaries than in the middle of

the domain. Although this property is suitable for bound-
ary-layer problems, it may create difficulties for other types

with arbitrary initial and boundary conditions. For spectralof problems, particularly those with disparate length scales
methods, a polynomial (in the spatial variable x) of degreethat occur in multiple regions of the domain (e.g., diffusive
N, UN(x, t), and a projection operator IN are sought suchburning or detonation and reacting mixing layers). The
thatprinciple reason for the degradation in performance on

these disparate problems is that the predetermined node
points do not, in general, coincide with the features that
are being resolved. Grid mappings can concentrate the IN FUN

t
2

INF(UN)
x G5 0. (2)

node points into regions more ideally suited for accurate
resolution but present a serious limitation for complicated
problems. For this reason, spectral multidomain techniques The different spectral (polynomial) methods correspond
have an obvious advantage for complicated problems to different projection operators IN . For example, the Leg-
[1]–[3]. endre Galerkin method is obtained by choosing IN to be

Another complication of conventional spectral methods the orthogonal projection on the uniform L2 norm on the
is their implementation in complex geometries. Meshes interval 21 # x # 1. In the Legendre collocation method
that are predetermined present a significant constraint. IN f(x) collocates f(x) at the Gauss–Legendre–Lobatto
Flexible mesh distributions are easily extended to geome- (GLL) quadrature nodes. Equivalently, it is the orthogonal
tries that are not tensor products of straight lines (to be projection on the scalar product defined by the GLL quad-
shown in a later work). rature formula.

Spectral methods that are not constrained to specific Of the spectral techniques, the most popular method is
nodal points would clearly be more flexible than conven- the Chebyshev collocation method, in which IN f(x) collo-
tional spectral methods. Specifically, a distribution of cates f(x) at the Chebyshev GL points jj 5 cos(fj/N).
points that more closely approximates the disparate fea- Note that here we have two projections; one involves the

differentiation of F (UN), and the other involves the way
that the equation is satisfied. Thus, the first application of1 Research supported by AFOSR Grant 93-0090, ARPA Grant N00014-

91-J-4016, and NSF Grant DMS-9211820. the operator IN occurs when we approximate F (U)/x
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by the derivative of the interpolation polynomial that inter- to obtain spectral elements. However, their work was not
generalized to arbitrary grids.polates F (U) at the Chebyshev GL quadrature nodes.

The second application of IN occurs when we satisfy the
approximate equation 2. THE DIFFERENTIATION MATRIX FOR

UNSTRUCTURED GRIDS

FUN

t
2

INF (UN)
x G5 0 The idea behind the differentiating matrix is that the

derivative operator on a polynomial space is a linear trans-
formation between finite-dimensional spaces and therefore

at the Chebyshev GL points. can be represented by a matrix. If we choose our basis as
The basic premise for unstructured spectral methods is the Lagrange interpolating polynomials, then this matrix

that Eq. (2) does not have to be satisfied in the same is uniquely determined. The procedure to be described
manner in which the operation INF (UN)/x is carried gives the explicit formulas involved, when both the polyno-
out. In particular, the derivative operation can be carried mial and its derivative are expressed in the Lagrange basis.
out by interpolation at any selected points; the equation Consider the set of points (x0 5 1, x1, x2 , ... , xN21, xN 5
is satisfied by either a Galerkin formulation or by a colloca- 21), where the points x1 , x2 , ... , xN21 are arbitrary. Let
tion method at a different set of points. Most importantly, f(x) be a function defined everywhere in [21, 1]. The
the equation must be satisfied correctly. interpolation polynomial fN(x) that collocates f(x) at the

points xj is given byFormally, we can replace Eq. (2) with

fN(x) 5 JNf 5 ON
j50

f(xj)Lj(x), (4)IN FUN

t
2

JNF (UN)
x G5 0, (3)

where the Lagrange polynomials Lj(x) are defined bywhere IN ? JN. Similar ideas are being utilized in the finite
element community.

L(x) 5 (x 2 x1)(x 2 x2) ? ? ? (x 2 xN22)(x 2 xN21) (5)In Ref. [4], a particular case with this approach was
discussed. The operator JN was defined by the Chebyshev

Lj(x) 5
(1 2 x2)L(x)

(1 2 x2
j )(x 2 xj)L9(xj)

, 1 # j # N 2 1, (6)collocation operator, and IN was the Legendre collocation
operator. In the constant-coefficient case (F (U) 5 U), this
method reduces to the Legendre collocation method with L0(x) 5

(1 1 x)L(x)
2L(1)

(7)
an efficient way of calculating the derivative by using Cheb-
yshev collocation points. We now generalize this notion to

LN(x) 5
(1 2 x)L(x)

2L(21)
. (8)an arbitrary set of points, which enables us to apply spectral

methods in circumstances for which the grid points are not
nodes of some Gauss quadrature formula. The Lagrange polynomial evaluated at the discrete points

The method discussed in this paper is different from xk for k ? j, is equal to 0; Lj(xk) 5 dj,k .
using a transformation to redistribute the grid points. The We use dJN f(x)/dx as the approximation to df(x)/dx.
use of a transformation to redistribute the grid points in- Note that dfN/dx has two alternative representations; the
volves approximation of the solution by a polynomial in first is obtained by differentiating (4) as
the transformed variable; as a result, the approximation is
not a polynomial in the original variable. Our method
utilizes a polynomial in the original variable. Moreover,

dfN(x)
dx

5 ON
j50

f(xj)L9j (x). (9)
the new method can be applied to totally unstructured
grids. We focus on the semi-discrete case since the essence

The second representation stems from the fact thatof the new method involves only the treatment of the
dJNf(x)/dx is a polynomial of degree N 2 1; therefore,spatial terms and the boundary conditions. In the results

section we extend the method to the fully discrete case.
Finally, it should be noted that the new method has many dfN(x)

dx
5 ON

j50
f 9N(xj)Lj(x). (10)

similarities with spectral elements, although the method of
derivation is different. For instance, Patera [5] or Korczak
et al. [1] used global polynomials (Lagrangian interpo- Equations (9) and (10) are used to relate the grid-point
lants), passed through the Chebyshev collocation points, values of the derivative f 9N(xj) to those of the function.
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The most obvious way is to equate the expressions in (9) differentiation matrices derived from (14) must be the
same as the matrix derived from (11) (with the assumptionand (10) at the grid points xk (0 # k # N) to obtain
that M is invertible):

f 9N(xk) 5 ON
j50

L9j (xk) f(xj). (11)
D 5 M21S. (21)

To rewrite expression (11) in matrix form, we first denote To prove this, we use (13) and (16) to get

f9 5 [f 9N(x0), ..., f 9N(xN)]T, f 5 [f(x0), ..., f(xN)]T

(MD)i,k 5 E1

21
Li(x) FON

j50
Lj(x)L9k(xj)G .

which yields

We now use the fact that every polynomial of degree N isf9 5 Df, (12)
identical with its Nth-degree interpolation polynomial. Thus,

where the differentiation matrix D is given by because L9k(x) is a polynomial of degree N 2 1 and

D 5 (dj,k) 5 [L9k(xj)]. (13) ON
j50

L9k(xj)Lj(x)

We can also state that (9) and (10) are the same in the
weak form, demanding that the difference between these is its interpolant at the points xj (0 # j # N) then
expressions (which is identically 0) is orthogonal to all
polynomials of degree #N: ON

j50
Lj(x)L9k(xj) 5 L9k(x)

E1

21
On
j50

[ f(xj)L9j (x)2 f 9N(xj)Lj(x)]Lk(x) dx50, 0#k#N.

which yields(14)

The system of equations that follows from (14) can be (MD)i,k 5 E1

21
Li(x)L9k(x) 5 si,k

rewritten as

(which is apparent from (17)). This establishes expres-ON
j50

mk, j f 9N(xj) 5 ON
j50

sk, j f(xj), 0 # k # N, (15) sion (21).
Thus, we have defined a new method, based on the

arbitrary distribution of points, to approximate the deriva-where
tive of a function. The attractive features of representation
(21) for the differentiation matrix are summarized inmk, j 5 E1

21
Lj(x)Lk(x) dx (16)

Lemma 3.1 and Lemma 3.2:

LEMMA 2.1. The matrix M defined in (16) is a symmetricand
positive-definite matrix.

sk, j 5 E1

21
L9j (x)Lk(x) dx (17) Proof. The fact that M is symmetric follows immedi-

ately from the definition (16). We must show that M is
In the matrix form, Eq. (15) becomes positive definite. Let V be an N 1 1 component vector:

Mf9 5 Sf, (18) V 5 (v0 , ..., vN).

where
Then we get

M 5 (mk, j), 0 # j, k # N, (19)

VTMV 5 ON
i50

ON
j50

mi, jvivj (22)
and

S 5 (sk, j), 0 # j, k # N. (20) 5 E1

21
ON
i50

viLi(x) ON
j50

vjLj(x) dx $ 0 (23)

Equations (14) and (11) are different manifestations of
the same fact: (9) and (10) are equivalent. Therefore, the recalling the definition of mi, j from (16).
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Clearly, the equality sign holds only if V is the null Thus,
vector.

VTSV 5 ON
k50

ON
j50

vjvksk, jEquation (22) can be interpreted in a different way. Let
v(x) be the polynomial of degree N defined by

5
1
2 O

N

k50
ON
j50

vjvk(sk, j 1 sj,k)v(xj) 5 vj , 0 # j # N,

so that 5
1
2 O

N

k50
ON
j50

vjvk(dk,0dj,0 2 dk,Ndj,N)

5 As (v2
0 2 v2

N)v(x) 5 ON
j50

vjLj(x).

which completes the proof of (25).
Then, (23) can be rewritten as

As before, Eq. (25) has a natural interpretation in the
polynomial space. Let v(x) be the polynomial of degree
N such that v(xj) 5 vj . Then,VTMV 5 E1

21
v(x)2 dx. (24)

VTSV 5 ON
k50

ON
j50

vjvksk, jThus, every vector V can be identified with a polynomial
v(x) that takes the values of its components at the grid
points xj . The vector space norm

5 ON
k50

ON
j50

vjvk E1

21
Lk(x)L9j (x) dx

VTMV
5 E1

21
v(x)v9(x) dx

is equivalent to the function space norm
5 As [v2(1) 2 v2(21)].

E1

21
v(x)2 dx. Note that

v(1) 5 v0 , v(21) 5 vN .Next, we will consider the properties of the matrix S.

LEMMA 2.2. Let S be defined in (17), and let V be defined Thus, (25) is an integration-by-parts formula.
as before. Then, The last issue that we will discuss in this section is the

relationship between differentiation matrices based on dif-
VTSV 5 As (v2

0 2 v2
N). (25) ferent grid-point distributions. Consider two grids xj and

yj ( j 5 0, ..., N). Let the Lagrange polynomial Lx
j (x) be

defined as in (6)–(8), and let Ly
j (x) be defined in a similarProof. We start by showing that S is almost antisym-

way, based on the set of points yj . This defines two differen-metric. From the definition (17) and integration by parts,
tiation matrices (see (11)):we get

Dx 5 (dx
j,k) 5 [(Lx

k)9(xj)] (26)
sk, j 5 E1

21
L9j (x)Lk(x) dx

and
5 Lj(1)Lk(1) 2 Lj(21)Lk(21) 2 sj,k .

Dy 5 (dy
j,k) 5 [(Ly

k)9( yj)]. (27)

We now use the definition of the Lagrange polynomials
We now show that the two matrices are similar.(6)–(8) and note that the boundary terms vanish for 0 ?

j, k ? N to yield THEOREM 2.1. Define the matrix T by

T 5 (tij) 5 [Lx
j ( yi)]. (28)sk, j 1 sj,k 5 dk,0dj,0 2 dk,Ndj,N .



78 CARPENTER AND GOTTLIEB

Then last section. Note that the differentiation matrix uses the
arbitrary grid xj . With the new method, we seek a vector(T 21)ij 5 [Ly

j (xi)] (29)

u 5 [u0(t), ..., uN(t)]Tand

that satisfiesDy 5 TDxT 21. (30)

Proof. 1. Because Ly
k is a polynomial of degree N, M

du
dt

5 Su 2 te0[u0 2 g(t)], (37)

ON
j50

Lx
j (x)Ly

k(xj) 5 Ly
k(x). where

e0 5 (1, 0, 0, ..., 0)T.If we substitute x 5 ym , then we get

The last term in Eq. (37) accounts for a weak imposition
of the boundary condition. This technique was used pre-ON

j50
Lx

j ( ym)Ly
k(xj) 5 Ly

k( ym) 5 dk,m

viously [7] to avoid unphysical growth in time of the numer-
ical solution, and extends to constant coefficient hyperbolic

which proves (29). systems. We show later in this work that this weak treat-
ment is spectrally consistent and stable when the constant2. Again, the Lagrange polynomials, based on the grid
t satisfies t $ As.points yj , are polynomials of degree N; therefore, their

We note here that in spectral methods we identify thederivative can be represented as
vector u with the polynomial uN(x, t) such that

(Ly
i )9(x) 5 ON

j50
Ly

i (xj)(Lx
j )9(x). (31) uN(xj , t) 5 uj(t), 0 # j # N,

The discussion on imposing the initial condition is de-By the same token,
ferred until later in the paper because of subtle issues that
involve convergence. Here, we generally will not use

(Lx
j )9(x) 5 ON

l50
(Lx

j )9(xl)Lx
l (x). (32)

uj(0) 5 f(xj), 0 # j # N,

Now, we substitute x 5 ym in (31) and (32) to get unless the grid points xj have special properties.
The structure of the matrices M and S, indicated in (34)

and (37), leads immediately to the following stability result.
(Ly

i )9( ym) 5 ON
j50

ON
l50

Ly
i (xj)(Lx

j )9(xl)Lx
l ( ym). (33)

THEOREM 3.1. The method described in (37) is stable
for t $ As.

The left-hand side is the (m, i) element of Dy , whereas
Proof. We multiply (37) by uT to getthe right-hand side is the (m, i) element of T 21DxT ; thus,

(30) has been proved.

uTM
du
dt

5 uTSu 2 tuTe0[u0 2 g(t)]. (38)
3. THE LEGENDRE GALERKIN METHOD BASED ON

ARBITRARY GRIDS
We use the symmetry property for M and the almost

Consider now the linear form of (1): skew symmetric property (25) for S to obtain

Ut(x, t) 5 Ux(x, t), 21 # x # 1, (34) 1
2

d
dt

uTMu 5
1
2

(u2
0 2 u2

N) 2 tu0[u0 2 g(t)]. (39)
U(x, 0) 5 f (x) (35)

U(1, t) 5 g(t). (36) For stability, we have to consider only the case
g(t) 5 0 (since the error satisfies the homogeneous bound-
ary condition); from this case we can clearly determineWe introduce a new method for the discretization of

(34), based on the differentiation matrix introduced in the that if t $ As, then
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1
2

d
dt

uTMu # 0 (40) (Mr)i 5E1

21
Li(x) ON

j50
Lj(x) FP9N11(xj)1P9N(xj)

2 G dx. (45)

and stability exists in the norm induced by the positive- Because P9N11 and P9N are polynomials of degree #N,
definite matrix M. they coincide with their Nth-degree interpolation polyno-

mials; therefore,The stability result (39) can be expressed in terms of
the polynomial uN(x, t) . From (24) we see that

ON
j50

Lj(x) FP9N11(xj) 1 P9N(xj)
2 G5 FP9N11(x) 1 P9N(x)

2 G1
2

d
dt

E1

21
uN(x, t)2 dx5

1
2

d
dt

uTMu

so that
5

1
2

(u2
0 2u2

N)2tu2
0

(Mr)i 5 E1

21
Li(x) FP9N11(x) 1 P9N(x)

2 G dx
5

1
2

[uN(1, t)2 2uN(21, t)2]2tuN(1, t)2.

5 Li(1) FPN11(1) 1 PN(1)
2 GThus, for the polynomial uN(x, t) we have stability in the

usual L2 norm, provided that t $ As.
Now, we examine Eq. (37) from yet another point of

2 Li(21) FPN11(21) 1 PN(21)
2 Gview. By multiplying Eq. (37) by M21 and using Eq. (21)

we obtain

2 E1

21
L9i (x) FPN11(x) 1 PN(x)

2 G dx.du
dt

5 M21Su 2 tM21e0[u0 2 g(t)] (41)

5 Du 2 tM21e0[u0 2 g(t)]. (42) Recall that

The expression M21e0 can be evaluated explicitly. PN(1) 5 1 , PN(21) 5 (21)N

THEOREM 3.2. Let M be the mass matrix defined in (16)
and that PN and PN11 are orthogonal to all polynomials ofDefine the residual vector r by
degree ,N; the last two terms in the right-hand side vanish,
and we are left withM21e0 5 r 5 (r0 , ..., rN)T.

(Mr)i 5 Li(1) 5 di,0Then,

which proves Theorem 4.2.

rj 5
P9N11(xj) 1 P9N(xj)

2
, (43) Theorem 4.2 sheds a new light on the connection be-

tween the method defined in (37) that uses the arbitrary
set of grid points xj and the Legendre Galerkin method.

where PN(x) is the Legendre polynomial of order N. They are the same method.

Remark. The Legendre polynomials are orthogonal THEOREM 3.3. The method defined in (37) is equivalent
under uniform weighting on the interval 21 # x # 1. They to the Legendre Galerkin method.
naturally arise in this method because the elements of the

Proof. The polynomial uN(x, t) satisfies the errormatrix M are based on the uniform scalar produce. If we
equationwere to use the weighted scalar product, the orthogonal

polynomials under this weight would be presented.

Proof. We must verify that if r satisfies (43), then uN(x, t)
t

2
uN(x, t)

x
5 t FP9N11(x) 1 P9N(x)

2 G
(46)the expression

[uN(1, t) 2 g(t)].
Mr 5 e0 (44)

The error equation is satisfied because both sides of expres-
sion (46) are polynomials of degree N agreeing at N 1 1is also satisfied. From definition (16) and Eq. (43) we get
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points xj ( j 5 0, ..., N) by virtue of (37). Note that the The Legendre Galerkin method defined by Eq. (37) is
stable; therefore, the initial error is not amplified. How-right-hand side is orthogonal in the usual L2 norm to all

polynomials of degree N that vanish on the boundary x 5 ever, the effects of initial conditions must be carefully taken
into account. We know that polynomials based on arbitrary1. This is the definition of the Legendre Galerkin method

[6]. In contrast, the Legendre Collocation method yields grid distributions may generally be divergent as the number
of collocation points N grows (the Runge phenomenon).a right-hand side that is orthogonal in the discrete uni-

form norm. The initial error can be decreased with the number of
mesh points N by constructing the Chebyshev interpolation

Section 3 shows that two differentiation operators de- as an initial condition. Thus, let
fined on different grids are similar and, thus, have the same
eigenvalues. We now show that the modified differentia-
tion matrix also has this property. Equation (41) produces j j 5 cos Sfj

ND , 0 # j # N, (49)
a modified differentiation matrix (i.e., a differentiation ma-
trix that takes into account the boundary conditions),

Lj(x) 5 (1 2 x2)T 9N(x) (50)
D 2 tR,

Lj
j (x) 5

Lj(x)
(x 2 j j)(Lj)9(j j)

. (51)
where the boundary matrix R is defined as

The Chebyshev approximation for the initial conditionRi, j 5 ridj,0 . (47)
is, then,

Suppose now that we have two grids xj , yj ( j 5 0, ..., N).
We have shown in Theorem 2.3 that Dx and Dy are similar,

CN f(x) 5 ON
j50

f(j j)Lj
j (x) (52)

Dy 5 TDxT 21,

so that the recommended initial approximation will bewhere the matrices T and T 21 are defined in (28) and (29).
We show now that the same similarity transformation exists
for the modified differentiation matrices. That is, f(xj) p ON

j50
f(j j)Lj

j (xj).

Dy 2 tRy 5 T(Dx 2 tRx)T 21 (48)
This approximation will provide a convergent approxima-

or (with Theorem 3.1) tion for the initial condition. Of course, the Chebyshev
approximation is not the only possibility; any other conver-

Ry 5 TRxT 21. gent spectral or pseudospectral approximation would do
as well.

Consider element (i, j) of the right-hand side We now briefly discuss the issue of implementation. Two
methods are available for implementing the arbitrary-grid
spectral methods. The first method is to form the matrices(TRxT 21)i, j 5 ON

l50
ON
m50

Ti,l(Rx)l,mT 21
m, j

M and S by carrying out explicitly the integrations in (16)
and (17). (This technique is utilized in the two examples

5 ON
l50

ON
m50

Lx
l ( yi)rld0,mLy

j (xm). presented later in the text.) This procedure is done once
and for all for every given set of grid points. Then, the
semi-discrete equations as described in (37), are advancedWe recall that
in time using an ODE solver. For example, in this work,
a fifth-order Runge–Kutta method is used. A more conve-

rl 5 FP9N11(xl) 1 P9N(xl)
2 G 5 RN(xl), nient method that does not involve evaluating integrals is

to use the differentiation matrix D defined in (13) and
solve the system (41) with the identity

where RN(x) is a polynomial of degree N and is, therefore,
equal to its interpolant. Thus,

M21e0 5
P9N11(xj) 1 P 9

N(xj)
2(TRxT 21)i, j 5 RN( yi)Ly

j (x0) 5 RN( yi)dj,0

which proves that the similarity transformation is valid proven in Theorem 4.2. For a large N, the method that will
be the most successful is the one with the least sensitivity toeven for the modified derivative matrix.
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round-off errors. This point has not been fully investigated In the Legendre collocation method of (34) with arbi-
trary grids, we seek a vectorat this time.

Finally, an observation in regard to the maximum allow-
u 5 [u0(t), ..., uN(t)]Table time step for the arbitrary-grid spectral schemes. All

spatial operators have the same eigenvalues, regardless
that satisfiesof the spatial distribution of points (48). Therefore, the

maximum allowable time step is the same for all schemes.
Mc

du
dt

5 Scu 2 te0[u0 2 g(t)], (55)
4. THE LEGENDRE COLLOCATION FOR

UNSTRUCTURED GRIDS
where

The Legendre collocation for unstructured grids involves
e0 5 (1, 0, 0, ..., 0)T.the approximation of the integrals in (16) and (17) by the

GLL quadrature formula. Let (h0 5 1, h1 , ..., hN21 , hN 5 Alternatively,
21) be the nodes of the GLL quadrature formula (the
zeroes of the polynomial P9N(x)(1 2 x2)) and gl , 0 # l # du

dt
5 Du 2 tM21

c e0[u0 2 g(t)], (56)N, be the weights.
We define a new mass matrix Mc by

The stability of (55) follows immediately from the fact
that Mc is symmetric positive definite and Sc satisfies (25).Mc(i, j) 5 ON

l50
Lj(hl)Lk(hl)gl , (53)

Our aim is to show that (55) is equivalent to the usual
Legendre collocation method.

where the Lj(x) are the Lagrange polynomials at the points
THEOREM 4.1. Let Mc be the mass matrix defined in(x0 5 1, x1 , x2 , ..., xN21 , xN 5 21). Note that this is an

(53). We define the residual vector r byarbitrary set of grid points.
The matrix Mc may be different from M because the

M21
c e0 5 r 5 (r0 , ..., rN)T.GLL formula is exact to order 2N 2 1 and Lj(x)Lk(x) is

a polynomial of order 2N. The matrix Mc is, however, a
Then,symmetric and positive-definite matrix.

By introducing quadrature to Eq. (17), we define a new
stiffness matrix Sc as rj 5 P9N(xj)(1 1 xj)

1
2N2 , (57)

Sc(i, j) 5 On
l50

L9j (hl)Lk(hl)gl . (54) where PN(x) is the Legendre polynomial of order N.

Proof. Since the polynomial P9N(1 1 x) is of degree
Note that because of the exactness of the GLL formula N, then
for polynomials of order 2N 2 1, the sum on the right-
hand side of (54) is the same as the integral in the right- ON

j50
Lj(x)P9N(xj)(1 1 xj) 5 P9N(x)(1 1 x).hand side of (17); therefore,

Sc 5 S.
Therefore,

For this reason, the property (25) is true for the stiffness
matrix Sc also. 2N2(Mc , r)i 5 ON

j50
Mc(i, j)P9N(xj)(1 1 xj)

The uniqueness of the differentiation matrix D also
yields

5 ON
j50

ON
l50

Lj(hl)Li(hl)P9N(xj)(1 1 xj)gl

M21
c Sc 5 M21S

5 ON
l50

Li(hl)P9N(hl)(1 1 hl)glwhich does not contradict the fact that

5 2N2d0,iMc ? M

because the matrices Sc and S are singular. which proves the theorem.
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Equation (56) can be interpreted in terms of the polyno- The derivative of the interpolant fN(x) has two equiva-
lent expressions:mial uN(x, t) to read

dfN(x)
dx

5 ON
j50

f(xj)
dLj(x)

dx
(64)

duN(xk , t)
dt

2 ON
j50

uN(xj , t)L9j (xk)
(58)

5 tRN(xk)[uN(1, t) 2 g(t)], and

where dfN(x)
dx

5 ON
j50

f 9N(xj)Lj(x). (65)

RN(x) 5 (1 1 x)P9N(x).
In the Galerkin Laguerre method, we express the equiv-

alency between the expressions byThis approach is equivalent to the Legendre collocation
method [6] since RN(x) is orthogonal to all polynomials in
the uniform L2 discrete norm. Ey

0
e2x ON

j50
Ff(xj)

dLj(x)
dx

2 f 9N(xj)Lj(x)G
(66)The extension of the arbitrary-grid Legendre collocation

method from the linear case (34) to the solution of the Lk(x) dx 5 0, 0 # k # N.
nonlinear case (1) is immediate. The issue of implementa-
tion could be significant. To avoid computing the points Equation (66) defines the differentiation matrix D. In fact,
hl , the best choice is to use the formulation (56) rather than if we define
(55). In this case, Mc and Sc do not need to be computed.

mk, j 5 (Lj , Lk) (67)

5. UNSTRUCTURED GRIDS FOR UNBOUNDED
and

DOMAINS: LAGUERRE METHODS

sk, j 5 (L9j , Lk), (68)Consider the equation

where the scalar product (u, v) is defined asU
t

5 2
U
x

, 0 # x , y, (59)

(u, v) 5 Ey

0
e2xu(x)v(x) dx

U(0, t) 5 g(t)

U(x, 0) 5 h(x). (60) then we get

D 5 M21S.Note that the domain is semibounded. Note also that if
g(t) 5 0, then

As before, the differentiation matrix is unique. The manner
in which the matrices M and S are constructed leads imme-d

dt
Ey

0
e2xU 2(x, t) dx 5 2Ey

0
e2xU 2(x, t) dx. (61) diately to the following lemma.

LEMMA 6.1. The matrix M is symmetric positive definite.
Assume that we have an arbitrary set of grid points The matrix S satisfies

(x0 5 0, x1 , ..., xN). S 1 ST 5 M 2 diagonal(1, 0, 0, ..., 0). (69)

In the Galerkin procedure, we approximate the deriva- Proof. From the definition of the matrix S, we have
tive of a function f(x) whose values at xj are given by the
derivative of its interpolant fN(x). After we define sk, j 5 (L9j , Lk)

L(x) 5 (x 2 x0) ? ? ? (x 2 xN) (62) 5 Ey

0
e2x L9j (x)Lk(x) dx

we define the Lagrange polynomials by
5 2Lj(0)Lk(0) 2 Ey

0
e2xLj(x)L9k(x) dx

Lj(x) 5
L(x)

(x 2 xj)L9(xj)
. (63) 1 Ey

0
e2xLj(x)Lk(x) dx.
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By using the definition of the matrix M and the properties
rj 5 2

d
dx

L
(0)
N11ux5xj

, (74)of the Lagrange polynomials, we get

where L
(0)
N is the Laguerre polynomial of order N.sk, j 5 2di,0dj,0 2 sj,k 1 mk, j (70)

Proof. We must verify that r satisfies (74) and that
which proves (69).

Mr 5 e0 .
To discretize (59), we introduce the unknown vector

We begin by expanding (Mr) as
u 5 [u0(t), ..., uN(t)]T

(Mr)i 5 ON
j50

mi, jrj

(75)that satisfies

5 Ey

0
e2xLi(x) ON

j50
Lj(x)rj dx.

M
du
dt

5 2Su 2 te0[u0 2 g(t)]. (71)

If we substitute (74) into (75), then we get
The stability is immediate, as shown in the following
lemma. (Mr)i 5 2Ey

0
e2xLi(x) ON

j50
Lj(x) Fd

dt
L

(0)
N11 ux5xjG dx. (76)

LEMMA 5.2. Let u satisfy (71), with g(t) 5 0. Then, we
have the energy estimate Because (d/dx) L

(0)
N11 is a polynomial of order N, it coin-

cides with its interpolant; therefore,
d
dt

uTMu 5 2uTMu 2 (2t 2 1)u2
0 . (72)

ON
j50

Lj(x) F d
dx

L
(0)
N11ux5xjG5

d
dt

L
(0)
N11(x).

Proof. Equation (72) follows immediately from multi-
plying (71) by uT and using (69). Thus,

Lemma 6.1 implies that the method is stable, provided
(Mr)i 5 2Ey

0
e2xLi(x)

d
dx

L
(0)
N11(x) dx.that t $ As. Note that the energy estimate (72) for the

approximation is nearly the same as for the differential
equation (61). If we integrate the right-hand side by parts, we get

We still must show that the method described in (71) is
equivalent to the Laguerre Galerkin method. We begin by

(Mr)i 5 1Li(0) L
(0)
N11(0) 2 Ey

0
e2xLi(x) L

(0)
N11(x) dxrewriting (71) as

1 Ey

0
e2xL9i (x) L

(0)
N11(x) dx.

du
dt

5 2M21Su 2 tM21e0[u0 2 g(t)]. (73)

The last two terms on the right vanish because of the
orthogonality of L (0), and the first term vanishes if i ?

The key issue is to identify the vector 0; thus,

M21e0 (Mr)i 5 2di,0

and the theorem is proven.which is done in the following theorem.

Another method for getting the Laguerre method onTHEOREM 5.1. Let M be the mass matrix defined in (67).
the grid xj is to seek a polynomial uN(x, t) such thatDefine the residual vector r by

M21e0 5 r 5 (r0 , ..., rN)T.
duN(xk , t)

dt
5 ON

j50
L9j (xk)uN(xj , t)

(77)
2 tL 0

N(xk)[uN(x0 , t) 2 g(t)],Then
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4. Chebyshev2 (i.e., xj 5 cos2(fj/N))

5. (Chebyshev)2 for 21 # x # 0 and (Chebyshev)1/2

for 0 # x # 1, where (Chebyshev)1/2 is defined by the grid
points xj 5 cos1/2(fj/N).

The qualitative features of Fig. 1 are identical with 32-
and 64-bit precision. The only quantitative difference is the
absolute level at which roundoff error becomes dominant.

The log10 of the L2 error, plotted against the number of
points in the approximating polynomials is shown in Fig.
1. The problems are run to the physical time T 5 2. Similar
results are obtained for longer times, since no time growth
of the numerical solution is experienced (as predicted on
theoretical grounds). The convergence is exponential for
all cases until machine roundoff is encountered. These
results are consistent with the previous numerical results.
(Note that the Chebyshev grid is the least sensitive to
roundoff error.)

The Legendre Galerkin method defined by Eq. (37) is
stable; therefore, the initial error is not amplified. How-
ever, the effects of initial conditions must be carefully takenFIG. 1. Convergence of the arbitrary grid Legendre Galerkin method
into account. We know that polynomials based on arbitraryon various grids.
grid distributions may be divergent. This property, called
the Runge phenomena, is easily demonstrated by approxi-
mating the function f(x) 5 1/(1 1 (5x)2) (21 # x # 1)where L 0

N is the Nth-degree Laguerre polynomial. This
on a uniform grid. The global approximating polynomialsapproach is the Laguerre collocation method.
oscillate wildly at each end of the domain, which yields a
poor approximation in those regions. The Runge phenom-6. NUMERICAL RESULTS
ena is alleviated by using a grid distribution (like the Cheb-
yshev grid distribution), which clusters points near theWe now test the previous theoretical results with two

numerical examples. The linear equations (34)–(36) are boundaries 21 and 1.
Figure 2 illustrates that a Runge-like phenomena existssolved with f(x) 5 sin(fx), g(t) 5 sin[f(1 1 t)], and the

exact solution U(x, t) 5 sin[f(x 1 t)]. The ODE solver within the arbitrary-grid spectral methods if special precau-
tions are not taken in the initialization step. In this problem,used is the six-stage, fifth-order Runge–Kutta formula de-

veloped by Zonneveld [8]. The physical boundary data is the linear equations (34)–(36) are solved with f(x) 5
1/(1 1 [5(x)]2, g(t) 5 1/(1 1 [5(1 1 t)]2, and the exactimplemented by numerically integrating the differentiated

exact boundary condition; a procedure shown in Ref. [9] solution U(x, t) 5 1/(1 1 [5(x 1 t)]2. The simulation is
run to time T 5 0.0002 (a physical time that is well beforeto retain the formal accuracy of the combined space-time

discretization. A fixed time step is chosen so that the domi- the influence of the initialization is lost). (Running to a
physical time T $ 2 yields exponential convergence on allnant error is the spatial truncation error. Ensuring negle-

gible temporal error required time steps of the order 1025 grids.) Convergence is achieved only for the Chebyshev
grid distribution.for the 128-bit cases with N P 30. A variety of grids, ranging

from Chebyshev to ‘‘randomly generated,’’ are used to test The source of the error in this problem is the failure of
the arbitrary grid solution that approximates the polyno-the accuracy and stability of the method. All calculations

are performed in 32, 64 and 128-bit arithmetic. Rounding mial to converge to the initial condition. For small times
(,1 convective sweep), erroneous information is left inerrors did not produce stability problems for any of the

different precisions. the domain, and the resulting method is divergent. By
changing the problem slightly, however, convergence canFigure 1 shows a refinement study on five different grids

as calculated using 128-bit arithmetic: be recovered on all grids.
To initialize the problem, we must construct an approxi-

1. Uniform grid xj 5 (2j 2 N)/N ( j 5 0, ..., N)
mation to the initial condition f(x), based on the grid points

2. Chebyshev grid xj 5 cos(fj/N) xj (0 # j # N). We want to keep the flexibility and rigid
structure of the original grid distribution; however, the3. A linear combination of the uniform grid and Cheb-

yshev grid (i.e, xj 5 Ad (2 j 2 N)/N 1 Sd cos(fj/N)) interpolation polynomial, based on the grid points xj , gen-
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nentially convergent and stable. The absolute level of error
is larger for the grids other than Chebyshev, due to the
approximate nature of the initialization. Note that for this
study, a randomly generated grid is included. The solution
obtained on these randomly generated grids is convergent
and the absolute level of error is approximately equal to
that obtained on the uniform grid.

As a final comment, we note that all these calculations
were performed using matrix–vector multiplications with-
out the used of fast transform methods. Only for cases
involving a Chebyshev grid distribution, does a convenient
fast transform exist. Work is presently underway on the
implementation of these spectral methods to nonlinear
equations.

7. CONCLUSIONS

A new technique for implementing spectral methods for
hyperbolic equations has been developed that does not
require grid points to be nodes of some Gauss quadrature
formula. For this reason, this method is referred to as an

FIG. 2. Divergence of the arbitrary grid Legendre Galerkin method
arbitrary-grid spectral method. Both Galerkin and colloca-for improperly imposed initial conditions.
tion formulations are presented for the conventional Leg-
endre method, and a Galerkin formulation is presented
for the conventional Laguerre method.

erally is not convergent. Therefore, we use the method The basis for the stability of the unstructured spectral
outlined in (49) and (52). With this initialization, spectral schemes relies on a weighted energy norm in all cases.
convergence is recovered. Stability is proven for the constant coefficient hyperbolic

Figure 3 shows the results for the previous study when system. All unstructured spectral methods utilize a ‘‘weak’’
each grid is properly initialized. All methods are now expo- imposition of the boundary condition, similar to the tech-

nique used in the penalty formulations of the finite element
method. With this imposition, the complete differentiation
matrix, including boundary conditions, is similar to (i.e.,
has the same eigenvalues) the conventional differentiation
operator; therefore, this matrix behaves similarly.

The new formulations are demonstrated on two scalar
hyperbolic problems. The arbitrary-grid Legendre Galer-
kin method is used in both cases. Exponential accuracy is
shown in both cases on arbitrary grids. Care must be exer-
cised in the initialization procedure to ensure convergence
of the new schemes.
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